Introduction

ELEMENTS OF DEDUCTIVE LOGIC

12. Predicate Logic: subsentential structure

J. Chandler

KUL 2012

ELEMENTS OF DEDUCTIVE LOGIC

The language \mathcal{L}_P

Names and predicates

Introduction

- To talk about subsentential forms: we move from \mathcal{L}_S to the language \mathcal{L}_P .
- We have some leftovers from \mathcal{L}_P .
- We keep our connectives: \sim , &, \vee , \supset , \equiv
- And the relevant syntactic rule:

If φ and ψ are wfs's, so too are $\sim \varphi$, $(\varphi \& \psi)$, $(\varphi \lor \psi)$, $(\varphi \supset \psi)$ and $(\varphi \equiv \psi)$.

- But we no longer have the structureless atomic wfs's of \mathcal{L}_S : all our wfs's will now have an internal structure.
- Note that Restall has \mathcal{L}_P as an *extension* of \mathcal{L}_S : his language of PL also includes the atomic wfs's of \mathcal{L}_S .

Introduction

Introduction

• Briefly mentioned a few lectures ago: the validity of many arguments isn't down to their sentential form.

Validity without valid sentential form

All hippos are bad-tempered.

Harry is a hippo. (Most descriptive s. form: Therefore Harry is bad-tempered. p,q, therefore r)

• They are valid because of their sub-sentential forms: we need to look 'inside' the atomic sentences.

ELEMENTS OF DEDUCTIVE LOGIC Names and predicates Introduction The language \mathcal{L}_P Introduction

- The second premise of our introductory argument:
 - (1) 'Harry is a hippo.'
- It involves:
 - a name, aka 'designator' ('Harry'), referring to a particular thing, here a person
 - a predicate ('... is a hippo'), to saying something about that thing
- Predicates are a bit like connectives in one respect:
 - Connectives make sentences out of sentences
 - Predicates make sentences out of names

Introduction
The language \mathcal{L}_P

Names and predicates

Arity

• Like connectives, predicates comes in different 'arities' (= take different numbers of elements as 'inputs').

```
Arities
Unary: '...is short'
Binary: '...loves...'
Ternary: '...is between...and ...'
```

- Unary predicates ⇒ claims regarding whether or not certain individuals have certain properties.
- n-ary predicates $(n > 1) \Rightarrow$ claims regarding whether or not certain individuals stand in a certain relations to one another.

J. Chandler

ELEMENTS OF DEDUCTIVE LOGIC

Introduction
The language \mathcal{L}_{P}

Names and predicates Ouantifiers

Translation

- Remember, for propositional logic:
 - To get a sentential form:
 different atomic NL sentences → different atomic L_S sentences
 - To get the *most descriptive* s. form: we also need same atomic NL sentences \rightarrow same atomic \mathcal{L}_S sentences
- Similar principle here:
 - To get a subsentential form:
 different NL names/predicates → different L_P names/predicates
 - To get the *most descriptive* subs. form: we also need same NL names/predicates \rightarrow same \mathcal{L}_P names/predicates

The language \mathcal{L}_P

Names and predicates

Names and predicates in \mathcal{L}_P

- Two new kinds of symbols in our expanded language \mathcal{L}_P of subsentential forms:
 - For names, aka 'constants': $a,b,c,\ldots,a_1,b_2,c_3,\ldots$
 - For predicates: $F, G, H, ..., F_1, G_2, H_3, ...$ (Note: these are sometimes superscripted to indicate arity, e.g. F^2 for a binary predicate.)
- And a new wfs formation rule:

If F is a predicate of arity n and a_1, \ldots, a_n are names, then $Fa_1 \ldots a_n$ is a wfs.

- Stylistic variants:
 - \bullet $F(a_1...a_n),$
 - *aFb* (for binary predicates).
- Note: order matters! $(Lab \neq Lba)$

J. Chandle

ELEMENTS OF DEDUCTIVE LOGIC

Introduction The language \mathcal{L}_P

Names and predicates

Translation (ctd.)

Subsentential form

'John liked Samantha, and Karl liked Trisha.'

Non-forms (diff $n/p \rightarrow same n/p$):

- Ljj&Lkt,
- Ljs&Lks, etc.

Forms (diff $n/p \rightarrow diff n/p$):

- Ljs&Mkt,
- Ljs&Lkt, etc.

Most descriptive form (same $n/p \rightarrow same n/p$):

 $\blacksquare Ljs\&Lkt$

Introduction The language \mathcal{L}_P

Names and predicates

Translation (ctd.)

• Sometimes, the logical form of a sentence can't just be straightforwardly 'read off':

Before formalising, try first to *paraphrase* the sentence in English, using constructions that have straightforward translations.

Paraphrasing first

'John and Karl love themselves.' \Rightarrow 'John loves John and Karl loves Karl.' $\Rightarrow Ljj\&Lkk$

'John smokes Camels and so does Karl.' \Rightarrow 'John smokes Camels and Karl smokes Camels.' $\Rightarrow Cj\&Ck$

'John used to be either a policeman or a fireman.' \Rightarrow 'John used to be a policeman or John used to be a fireman.' $\Rightarrow Pj \lor Fj$

J. Chandler

ELEMENTS OF DEDUCTIVE LOGIC

Introduction
The language $\mathcal{L}_{\mathcal{D}}$

Names and predicates Ouantifiers

Quantifiers

- The first premise of our introductory argument:
 - (2) 'All hippos are bad-tempered.'
- This isn't about a *particular* individual: no proper names here...
- Instead: quantified sentence.
- Quantified sentences are statement about quantities of individuals.
 - 'all'
 - 'some'
 - 'most'
 - 'few'
 - 'at least *n*'
- In \mathcal{L}_P , we will just have translations for sentences involving:
 - 'all' (aka universal quantification)
 - 'at least one' (aka existential quantification)

Introduction The language \mathcal{L}_P

Names and predicates

Translation (ctd.)

• Use predicates of the right arity.

The right arity

'Mary hated John.' $\Rightarrow Hmj$

We use a binary predicate standing for '...hated...', not a unary predicate standing for '...hated John'.

 Beware of mixed passive/active variants in a given argument or sentence: use a single predicate for both forms.

Mixed passive/active

'Either Mary was hated by John, or she hated him.' \Rightarrow $Hjm \lor Hmj$

J. Chandle

ELEMENTS OF DEDUCTIVE LOGIC

Introduction The language \mathcal{L}_P

Names and predicates

Quantification in \mathcal{L}_P

- Ok, so what exactly do we *mean* by
 - (3) 'All hippos are bad-tempered.'
- Plausible gloss:

It is true of *any* thing, call it 'x', that if x is a hippo, then x is bad tempered.

- Similarly, consider:
 - (4) 'Adam has lost something.'
- Gloss:

It is true of at least one thing, call it 'x', that Adam has lost x.

■ The translations of (3) and (4) in \mathcal{L}_P are very close to these glosses, in structural terms...

Introduction
The language \mathcal{L}_{P}

Names and predicates

Quantification in \mathcal{L}_P (ctd.)

• Regarding (3):

$$(\forall x)(Hx \supset Bx)$$

Stylistic variant: $(x)(Hx \supset Bx)$

- This is read: 'For all x, if Hx, then Bx.'
- Regarding (4): $(\exists x) Lax$
- This is read: 'There exists an x, such that Lax'
- We call $(\forall x)$ and $(\exists x)$ in our \mathcal{L}_P formulae quantifiers.
- So we have some new symbols:
 - Two symbols for quantification: ∀ and ∃
 - A set of variables: $x, y, z, \dots, x_1, y_2, z_3, \dots$
- But we also need syntactic rules for our new wfs's...

J. Chandler

ELEMENTS OF DEDUCTIVE LOGIC

Introduction The language \mathcal{L}_P

Names and predicates Quantifiers

Quantification in \mathcal{L}_P (ctd.)

Derivation of some wfs's

 $(\forall x)(Hx \supset Bx)$ is a wfs:

■
$$(Ha \supset Ba)$$
 is a wfs

$$\bullet (Ha \supset Ba)(a := x) = (Hx \supset Bx)$$

 $(\exists x)(\forall y)(Py \supset Hyx)$ is a wfs:

- $(Pa \supset Hab)$ is a wfs
- $\bullet (Pa \supset Hab)(a := y) = (Py \supset Hyb)$
- So $(\forall y)(Py \supset Hyb)$ is a wfs
- $\bullet (\forall y)(Py \supset Hyb)(b := x) = (\forall y)(Py \supset Hyx)$

e language \mathcal{L}_P

Names and predicates Quantifiers

Quantification in \mathcal{L}_P (ctd.)

• For this, we need the following piece of notation:

Where φ is a wfs, a is a name, and x is a variable, we write ' $\varphi(a := x)$ ' to denote the result of replacing all occurences of a in φ by x.

Substitution of variables

$$Lab(a := x) = Lxb$$

$$((Fc\&Gd) \supset Fd)(d := y) = ((Fc\&Gy) \supset Fy)$$

We can now offer:

If φ is a wfs, a is a name, and x is a variable, then $(\forall x)\varphi(a := x)$ and $(\exists x)\varphi(a := x)$ are both wfs's.

J. Chandle

ELEMENTS OF DEDUCTIVE LOGIC

Next session

- Topic: wrapping up quantifiers and first part of semantics for \mathcal{L}_P .
- Reading: Restall, Ch. 8, from 'Translation' onwards + Ch. 9, up to, but excluding, 'Quantifiers'.