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Introduction

◾ Last time: wrapping up the semantics for LP + introducing
tableaux
◾ Truth in a model: the general case
◾ Truth in finite models
◾ Testing for validity: a special case
◾ Testing for validity: the general case (tbc)

◾ This time: more on the last point, i.e. tableaux
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◾ The rule:

◾ Rationale:
◾ If (∀x)A is true, then all of its instances are true.
◾ This includes all those instances involving names already used on

the branch.
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Negated universal formulae

◾ The rule:

◾ Rationale:
◾ If ∼ (∀x)A is true, then (∀x)A is false, so not all of the instances

of the latter are true, so at least one of them is false and hence its
negation is true.

◾ This might not be an instance that involves a name already used
on the branch. So we introduce a new name, just in case.
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Particular vs general rules

◾ The rules for (∃x)A and ∼ (∀x)A are known as particular rules:
They are applied only once to a given formula.

◾ Once used, we put a tick next to the formula alongside the name
introduced: e.g. ✓a

◾ The rules for ∼ (∃x)A and (∀x)A are known as general rules:
They can be applied repeatedly to one same formula

◾ After first use, we put a backslash next to the formula alongside
the relevant name: e.g. /a.

◾ Upon subsequent uses, we simply add the relevant
namese.g. /a,b,c . . .
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Note on general rules

◾ Question:
What happens when all the formulae at the root of the tableau are
of the form ∼ (∃x)A or (∀x)A and do not contain any names?

◾ Answer:
◾ Since every domain has at least one element and every element is

named, we have to have at least one name by default, say ‘a’.
◾ We then substitute this into all the relevant formulae, using the

relevant rules.
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Completedness

◾ Note: there are no repeatable rules in propositional logic.

◾ The introduction of these rules makes a difference to the
definition of a completed tree in pred. logic.

◾ In prop. logic:
A tree is completed iff, in every open branch b, every formula on
b that could have had a rule applied to it has had a rule applied to
it.

◾ This is not good enough here: some formulae sometimes need to
have rules applied to them more than once.

◾ In pred. logic:
A tree is completed iff, in every open branch b, (i) every formula
on b that could have had a rule applied to it has had a rule applied
to it and (ii) every name on b has been substituted into every
formula of the form ∼ (∃x)A or (∀x)A.
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Examples

Brief general tips

◾ Apply propositional rules first, starting with non-branching rules.

◾ Then apply instantion rules, starting with particular rules.

◾ These recommendations are defeasible, however: e.g. the
application of a general rule may immediately lead to tableau
closure.

◾ Now for 3 examples: a tableau that closes, an open tableau with
countermodel and a little surprise. . .
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A closed tableau

◾ We show that (∀x)(Fx ⊃Gx),(∃x) ∼Gx ⊢ (∃x) ∼ Fx
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(∃x)Gx ✓b
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A completed open tableau

◾ We show that (∃x)Fx,(∃x)Gx ⊬ (∃x)(Fx&Gx)
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. . .
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↑
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Introduction
Testing for validity: the general case (ctd.)

Examples

A completed open tableau: the countermodel

◾ Our open branch contains: Fa, Gb, ∼Ga and ∼ Fb.

◾ So we have a domain D of size 2, say D = {d,e}, with I defined
as follows:

I
a d
b e

I(F)
d 1
e 0

I(G)
d 0
e 1
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Introduction
Testing for validity: the general case (ctd.)

Examples

An interminable open tableau (!)

◾ Yes indeed.

◾ We check whether or not ⊢∼ (∀x)(∃y)Lxy
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Examples

An interminable open tableau (!)

◾ Yes indeed.

◾ We check whether or not ⊢∼ (∀x)(∃y)Lxy

(∀x)(∃y)Lxy /a1,a2,a3

(∃y)La1y ✓a2

La1a2

(∃y)La2y ✓a3

La2a3

(∃y)La3y. . .
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Introduction
Testing for validity: the general case (ctd.)

Examples

An interminable open tableau (!) (ctd.)

◾ What’s going on here?

◾ It turns out that there exists a proof of invalidity: the completed
tableau is in fact open.

◾ Problem: the completed open tableau is infinitely long!

◾ So we cannot find this proof in a finite number of steps by
sequentially applying rules until we complete the tableau.

◾ This is also demonstrably true of any other mechanisable
procedure for finding a proof of either validity or invalidity in
pred. logic.

◾ We say that predicate logic is undecidable.

◾ This is not the case for propositional logic, nor is it the case for
the restriction of predicate logic to monadic predicates.

◾ In both those cases, completed trees are always finite.
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Next session

◾ Tableau exercises: check Toledo.

◾ Session after that: finishing off tableaux + identity and definite
descriptions.

◾ Reading: Restall Ch. 11.
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