J. Chandler

KUL 2012

= Last time: wrapping up the semantics for Lp + introducing
tableaux

= Truth in a model: the general case

= Truth in finite models

= Testing for validity: a special case

= Testing for validity: the general case (tbc)

= This time: more on the last point, i.e. tableaux

» Last time: wrapping up the semantics for L£p + introducing
tableaux

= Truth in a model: the general case

= Truth in finite models

= Testing for validity: a special case

= Testing for validity: the general case (tbc)

= This time: more on the last point, i.e. tableaux

» Last time: wrapping up the semantics for L£p + introducing
tableaux

= Truth in a model: the general case

= Truth in finite models

= Testing for validity: a special case

= Testing for validity: the general case (tbc)

= This time: more on the last point, i.e. tableaux

= Last time: wrapping up the semantics for Lp + introducing
tableaux

= Truth in a model: the general case

= Truth in finite models

= Testing for validity: a special case

= Testing for validity: the general case (tbc)

= This time: more on the last point, i.e. tableaux

= Last time: wrapping up the semantics for Lp + introducing
tableaux

= Truth in a model: the general case

Truth in finite models

= Testing for validity: a special case

= Testing for validity: the general case (tbc)

= This time: more on the last point, i.e. tableaux

Introduction
Testing for validity: the general case (ctd.)
Examples

Introduction

= Last time: wrapping up the semantics for Lp + introducing
tableaux
= Truth in a model: the general case
= Truth in finite models
= Testing for validity: a special case
= Testing for validity: the general case (tbc)

J. Chandler ELEMENTS OF DEDUCTIVE LOGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

Introduction

= Last time: wrapping up the semantics for Lp + introducing
tableaux
= Truth in a model: the general case
= Truth in finite models
= Testing for validity: a special case
= Testing for validity: the general case (tbc)

= This time: more on the last point, i.e. tableaux

J. Chandler ELEMENTS OF DEDUCTIVE LOGIC

= The rule:

= Rationale:
= If (Vx)A is true, then all of its instances are true.
= This includes all those instances involving names already used on
the branch.

s The rule:

(Vx)A
|
A(x:=a)
(a already on branch)

= Rationale:
= If (Vx)A is true, then all of its instances are true.
= This includes all those instances involving names already used on
the branch.

s The rule:

(Vx)A
|
A(x:=a)
(a already on branch)

= Rationale:
= If (Vx)A is true, then all of its instances are true.
= This includes all those instances involving names already used on
the branch.

s The rule:

(Vx)A
|
A(x:=a)
(a already on branch)

= Rationale:
= If (Vx)A is true, then all of its instances are true.
= This includes all those instances involving names already used on
the branch.

s The rule:

(Vx)A
|
A(x:=a)
(a already on branch)

= Rationale:
= If (Vx)A is true, then all of its instances are true.
= This includes all those instances involving names already used on
the branch.

Introduction
Testing for validity: the general case (ctd.)

Examples
Universal formulae
s The rule:
(Vx)A
\
A(x:=a)

(a already on branch)

= Rationale:

= If (Vx)A is true, then all of its instances are true.
= This includes all those instances involving names already used on
the branch.

J. Chandler ELEMENTS OF DEDUCTIVE LOGIC

= The rule:

= Rationale:

s If ~ (Vx)A is true, then (Vx)A is false, so not all of the instances
of the latter are true, so at least one of them is false and hence its
negation is true.

= This might not be an instance that involves a name already used
on the branch. So we introduce a new name, just in case.

s The rule:

~(Vx)A

~A(x:=a)
(a new)

= Rationale:

s If ~ (Vx)A is true, then (Vx)A is false, so not all of the instances
of the latter are true, so at least one of them is false and hence its
negation is true.

= This might not be an instance that involves a name already used
on the branch. So we introduce a new name, just in case.

s The rule:

~ (Vx)A
|
~A(x:=a)
(a new)

= Rationale:

s If ~ (Vx)A is true, then (Vx)A is false, so not all of the instances
of the latter are true, so at least one of them is false and hence its
negation is true.

= This might not be an instance that involves a name already used
on the branch. So we introduce a new name, just in case.

s The rule:

~ (Vx)A
|
~A(x:=a)
(a new)

= Rationale:

s If ~ (Vx)A is true, then (Vx)A is false, so not all of the instances
of the latter are true, so at least one of them is false and hence its
negation is true.

= This might not be an instance that involves a name already used
on the branch. So we introduce a new name, just in case.

Introduction
Testing for validity: the general case (ctd.)
Examples

Negated universal formulae

s The rule:
~(Vx)A

|
~A(x:=a)

(a new)

= Rationale:

= If ~ (Vx)A is true, then (Vx)A is false, so not all of the instances
of the latter are true, so at least one of them is false and hence its
negation is true.

J. Chandler ELEMENTS OF DEDUCTIVE LOGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

Negated universal formulae

s The rule:
~(Vx)A
\
~A(x:=a)
(a new)

= Rationale:
= If ~ (Vx)A is true, then (Vx)A is false, so not all of the instances
of the latter are true, so at least one of them is false and hence its
negation is true.
= This might not be an instance that involves a name already used
on the branch. So we introduce a new name, just in case.

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

The rules for (3x)A and ~ (Vx)A are known as rules:

They are applied only once to a given formula.
Once used, we put a tick next to the formula alongside the name
introduced: e.g.
The rules for ~ (3x)A and (Vx)A are known as rules:
They can be applied repeatedly to one same formula
After first use, we put a backslash next to the formula alongside
the relevant name: e.g.
Upon subsequent uses, we simply add the relevant
namese.g.

The rules for (3x)A and ~ (Vx)A are known as particular rules:

They are applied only once to a given formula.

Once used, we put a tick next to the formula alongside the name
introduced: e.g.

The rules for ~ (3x)A and (Vx)A are known as rules:
They can be applied repeatedly to one same formula

After first use, we put a backslash next to the formula alongside

the relevant name: e.g.

Upon subsequent uses, we simply add the relevant
namese.g.

The rules for (3x)A and ~ (Vx)A are known as particular rules:
They are applied only once to a given formula.

Once used, we put a tick next to the formula alongside the name

introduced: e.g.

The rules for ~ (3x)A and (Vx)A are known as rules:
They can be applied repeatedly to one same formula

After first use, we put a backslash next to the formula alongside

the relevant name: e.g.

Upon subsequent uses, we simply add the relevant

namese.g.

Introduction
Testing for validity: the general case (ctd.)
Examples

Particular vs general rules

» The rules for (3x)A and ~ (Vx)A are known as rules:
They are applied only once to a given formula.

= Once used, we put a tick next to the formula alongside the name
introduced: e.g.

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

Particular vs general rules

» The rules for (3x)A and ~ (Vx)A are known as rules:
They are applied only once to a given formula.

= Once used, we put a tick next to the formula alongside the name
introduced: e.g.
» The rules for ~ (3x)A and (Vx)A are known as rules:

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

Particular vs general rules

» The rules for (3x)A and ~ (Vx)A are known as rules:
They are applied only once to a given formula.
= Once used, we put a tick next to the formula alongside the name
introduced: e.g.
» The rules for ~ (3x)A and (Vx)A are known as rules:
They can be applied repeatedly to one same formula

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

Particular vs general rules

» The rules for (3x)A and ~ (Vx)A are known as rules:
They are applied only once to a given formula.
= Once used, we put a tick next to the formula alongside the name
introduced: e.g.
» The rules for ~ (3x)A and (Vx)A are known as rules:
They can be applied repeatedly to one same formula
= After first use, we put a backslash next to the formula alongside
the relevant name: e.g.

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

Particular vs general rules

» The rules for (3x)A and ~ (Vx)A are known as rules:
They are applied only once to a given formula.
= Once used, we put a tick next to the formula alongside the name
introduced: e.g.
» The rules for ~ (3x)A and (Vx)A are known as rules:
They can be applied repeatedly to one same formula
= After first use, we put a backslash next to the formula alongside
the relevant name: e.g.
= Upon subsequent uses, we simply add the relevant
namese.g.

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

= Question:
What happens when all the formulae at the root of the tableau are
of the form ~ (3x)A or (Vx)A and do not contain any names?

= Answer:
= Since every domain has at least one element and every element is
named, we have to have at least one name by default, say ‘a’.
= We then substitute this into all the relevant formulae, using the
relevant rules.

= Question:
What happens when all the formulae at the root of the tableau are
of the form ~ (3x)A or (Vx)A and do not contain any names?

= Answer:
= Since every domain has at least one element and every element is
named, we have to have at least one name by default, say ‘a’.
= We then substitute this into all the relevant formulae, using the
relevant rules.

= Question:
What happens when all the formulae at the root of the tableau are
of the form ~ (3x)A or (Vx)A and do not contain any names?

= Answer:
= Since every domain has at least one element and every element is
named, we have to have at least one name by default, say ‘a’.
= We then substitute this into all the relevant formulae, using the
relevant rules.

= Question:
What happens when all the formulae at the root of the tableau are
of the form ~ (3x)A or (Vx)A and do not contain any names?

= Answer:
= Since every domain has at least one element and every element is
named, we have to have at least one name by default, say ‘a’.
= We then substitute this into all the relevant formulae, using the
relevant rules.

Introduction
Testing for validity: the general case (ctd.)
Examples

Note on general rules

s Question:

What happens when all the formulae at the root of the tableau are
of the form ~ (3x)A or (Vx)A and do not contain any names?

= Answer:

= Since every domain has at least one element and every element is
named, we have to have at least one name by default, say ‘a’.

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

Note on general rules

s Question:
What happens when all the formulae at the root of the tableau are
of the form ~ (3x)A or (Vx)A and do not contain any names?

= Answer:

= Since every domain has at least one element and every element is
named, we have to have at least one name by default, say ‘a’.

= We then substitute this into all the relevant formulae, using the
relevant rules.

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

= We show that (Vx)Gx + (3x)Gx.

= We show that (Vx)Gx + (3x)Gx.

= We show that (Vx)Gx + (3x)Gx.

(Vx)Gx
~ (3Ix)Gx

= We show that (Vx)Gx + (3x)Gx.

(Vx)Gx \u
~ (3Ix)Gx

|
Ga

= We show that (Vx)Gx + (3x)Gx.

(Vx)Gx \u
~(Ix)Gx \a

|
Ga

|
~Ga

X

= Note: there are no repeatable rules in propositional logic.

= The introduction of these rules makes a difference to the
definition of a tree in pred. logic.
= In prop. logic:
A tree is completed iff, in every open branch b, every formula on
b that could have had a rule applied to it has had a rule applied to
it.
= This is not good enough here: some formulae sometimes need to
have rules applied to them more than once.
= In pred. logic:
A tree is completed iff, in every open branch b, (i) every formula
on b that could have had a rule applied to it has had a rule applied

to it and (ii) every name on b has been substituted into every
formula of the form ~ (3x)A or (Vx)A.

= Note: there are no repeatable rules in propositional logic.

= The introduction of these rules makes a difference to the
definition of a tree in pred. logic.
= In prop. logic:
A tree is completed iff, in every open branch b, every formula on
b that could have had a rule applied to it has had a rule applied to
1t.
= This is not good enough here: some formulae sometimes need to
have rules applied to them more than once.
= In pred. logic:
A tree is completed iff, in every open branch b, (i) every formula
on b that could have had a rule applied to it has had a rule applied

to it and (ii) every name on b has been substituted into every
formula of the form ~ (3x)A or (Vx)A.

Introduction
Testing for validity: the general case (ctd.)
Examples

Completedness

= Note: there are no repeatable rules in propositional logic.

s The introduction of these rules makes a difference to the
definition of a tree in pred. logic.

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

Completedness

= Note: there are no repeatable rules in propositional logic.

s The introduction of these rules makes a difference to the
definition of a tree in pred. logic.
= In prop. logic:

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

Completedness

= Note: there are no repeatable rules in propositional logic.
= The introduction of these rules makes a difference to the
definition of a tree in pred. logic.
= In prop. logic:
A tree is completed iff, in every open branch b, every formula on

b that could have had a rule applied to it has had a rule applied to
it.

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

Completedness

= Note: there are no repeatable rules in propositional logic.
= The introduction of these rules makes a difference to the
definition of a tree in pred. logic.
= In prop. logic:
A tree is completed iff, in every open branch b, every formula on

b that could have had a rule applied to it has had a rule applied to
it.

= This is not good enough here: some formulae sometimes need to
have rules applied to them more than once.

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

Completedness

= Note: there are no repeatable rules in propositional logic.
= The introduction of these rules makes a difference to the
definition of a tree in pred. logic.
= In prop. logic:
A tree is completed iff, in every open branch b, every formula on

b that could have had a rule applied to it has had a rule applied to
it.

= This is not good enough here: some formulae sometimes need to
have rules applied to them more than once.
» In pred. logic:

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

Completedness

Note: there are no repeatable rules in propositional logic.

The introduction of these rules makes a difference to the
definition of a tree in pred. logic.
In prop. logic:

A tree is completed iff, in every open branch b, every formula on
b that could have had a rule applied to it has had a rule applied to
it.

This is not good enough here: some formulae sometimes need to
have rules applied to them more than once.
In pred. logic:

A tree is completed iff, in every open branch b, (i) every formula
on b that could have had a rule applied to it has had a rule applied
to it and (ii) every name on b has been substituted into every
formula of the form ~ (3x)A or (Vx)A.

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

Apply propositional rules first, starting with non-branching rules.

Then apply instantion rules, starting with particular rules.
These recommendations are defeasible, however: e.g. the
application of a general rule may immediately lead to tableau
closure.

Now for 3 examples: a tableau that closes, an open tableau with
countermodel and a little surprise. ..

Apply propositional rules first, starting with non-branching rules.

Then apply instantion rules, starting with particular rules.
These recommendations are defeasible, however: e.g. the
application of a general rule may immediately lead to tableau
closure.

Now for 3 examples: a tableau that closes, an open tableau with
countermodel and a little surprise. ..

Apply propositional rules first, starting with non-branching rules.

Then apply instantion rules, starting with particular rules.
These recommendations are defeasible, however: e.g. the
application of a general rule may immediately lead to tableau
closure.

Now for 3 examples: a tableau that closes, an open tableau with
countermodel and a little surprise. . .

Introduction
Testing for validity: the general case (ctd.)
Examples

Brief general tips

= Apply propositional rules first, starting with non-branching rules.
= Then apply instantion rules, starting with particular rules.

» These recommendations are defeasible, however: e.g. the
application of a general rule may immediately lead to tableau
closure.

J. Chandler ELEMENTS OF DEDUCTIVE LOGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

Brief general tips

= Apply propositional rules first, starting with non-branching rules.
= Then apply instantion rules, starting with particular rules.

» These recommendations are defeasible, however: e.g. the
application of a general rule may immediately lead to tableau
closure.

= Now for 3 examples: a tableau that closes, an open tableau with
countermodel and a little surprise. ..

J. Chandler ELEMENTS OF DEDUCTIVE LOGIC

= We show that (Vx)(Fx> Gx),(3x) ~Gx+ (3Ix) ~ Fx

= We show that (Vx)(Fx> Gx),(3x) ~Gx+ (Ix) ~ Fx

= We show that (Vx)(Fx> Gx),(3x) ~Gx+ (Ix) ~ Fx

(Vx)(Fx> Gx)
(3x) ~ Gx
~(3x)~Fx

= We show that (Vx)(Fx> Gx),(3x) ~Gx+ (Ix) ~ Fx

(Vx)(Fx> Gx)
(3Ix) ~Gx v a
~(3x)~Fx

|
~Ga

= We show that (Vx)(Fx> Gx),(3x) ~Gx+ (Ix) ~ Fx

(Vx)(Fx>Gx) \u
(3Ix) ~Gx v a
~(3x) ~Fx
G

|
Fa> Ga

= We show that (Vx)(Fx> Gx),(3x) ~Gx+ (Ix) ~ Fx

(Vx)(Fx>Gx) \u
(3Ix) ~Gx v a
~(3x) |~Fx \a

~Ga

|
Fa> Ga

|
~~ Fa

= We show that (Vx)(Fx> Gx),(3x) ~Gx+ (Ix) ~ Fx

(Vx)(Fx>Gx) \u
(3Ix) ~Gx v a
~(3x) |~Fx \a

~Ga

|
Fa>Ga v

|
~~ Fa

/\
~Fa Ga

X X

= We show that (3x)Fx, (3x)Gx v (Ix) (Fx&Gx)

= We show that (3x)Fx, (3x)Gx v (Ix) (Fx&Gx)

= We show that (3x)Fx, (3x)Gx v (Ix) (Fx&Gx)
(Ix)Fx
(3x)Gx
~ (3x)(Fx&Gx)

= We show that (3x)Fx, (3x)Gx v (Ix) (Fx&Gx)

(Ix)Fx v a
(Ix)Gx
~ (3x)(Fx&Gx)

|
Fa

= We show that (3x)Fx, (3x)Gx v (Ix) (Fx&Gx)

(Ix)Fx v a
(Ix)Gx v b
~ (3x) (Fx&Gx)

|
Fa

|
Gb

= We show that (3x)Fx, (3x)Gx v (Ix) (Fx&Gx)

(Ix)Fx v a
(Ix)Gx v b
~ (3x)(Fx&Gx) \a

|
Fa

|
Gb

|
~ (Fa&Ga)

= We show that (3x)Fx, (3x)Gx v (Ix) (Fx&Gx)

(Ix)Fx v a
(Ix)Gx v b
~ (3x)(Fx&Gx) \a

|
Fa

|
Gb

|
~ (Fa&Ga) v
/\
~Fa ~Ga

X

= We show that (3x)Fx, (3x)Gx v (Ix) (Fx&Gx)

(Ix)Fx v a
(Ix)Gx v b
~ (3x)(Fx&Gx) \a.b
o

Gb |
~ (Fb&GDb)

|
~ (Fa&Ga) v

/\
~Fa ~Ga

x |

= We show that (3x)Fx, (3x)Gx v (Ix) (Fx&Gx)

(Ix)Fx v a
(Ix)Gx v b

~ (3x)(Fx&Gx) \a.b

|
Fa |

lb ~ (Fb&Gb) v
GI o Gh

~ (Fa&Ga) v 1

/\
~Fa ~Ga

x |

X

= Qur open branch contains: Fa, Gb, ~ Ga and ~ Fb.

= So we have a domain D of size 2, say D = {d, e}, with I defined
as follows:

I | I(F) | 1(G) |
a ‘ d d ‘ 1 d ‘ 0
b|e e ‘ 0 e ‘ 1

= QOur open branch contains: Fa, Gb, ~ Ga and ~ Fb.

= So we have a domain D of size 2, say D = {d, e}, with I defined
as follows:

I | I(F) | 1(G) |
a ‘ d d ‘ 1 d ‘ 0
b|e e ‘ 0 e ‘]

Introduction
Testing for validity: the general case (ctd.)
Examples

A completed open tableau: the countermodel

= QOur open branch contains: Fa, Gb, ~ Ga and ~ Fb.

= So we have a domain D of size 2, say D = {d,e}, with I defined
as follows:

J. Chandler ELEMENTS OF DEDUCTIVE LOGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

A completed open tableau: the countermodel

= QOur open branch contains: Fa, Gb, ~ Ga and ~ Fb.
= So we have a domain D of size 2, say D = {d,e}, with I defined

as follows:

1 I(F) I1(G)
a|d d 1 d 0
b|e

e 0 e 1

J. Chandler ELEMENTS OF DEDUCTIVE LOGIC

= Yes indeed.
= We check whether or not +~ (Vx)(3y)Lxy

= Yes indeed.
= We check whether or not +~ (Vx)(3y)Lxy

= Yes indeed.
= We check whether or not -~ (Vx)(3y)Lxy

= Yes indeed.
= We check whether or not -~ (Vx)(3y)Lxy

(Vx)(3y)Lxy

= Yes indeed.
= We check whether or not -~ (Vx)(3y)Lxy

(VX)(3y|)ny \a1

(3y)Lary

= Yes indeed.
= We check whether or not -~ (Vx)(3y)Lxy

(VX)(3y|)ny \a1

(3y)Layy v a»

|
Laay

= Yes indeed.
= We check whether or not -~ (Vx)(3y)Lxy

(Vx)(3y)Lxy \a1,a>
|
(3y)Layy v a»
|
Laa

|
(3y)Lazy

= Yes indeed.
= We check whether or not -~ (Vx)(3y)Lxy

(VX)(3y)Txy \ar,az

(3y)Layy v a»

|
Laa

|
(3y)Lazy v a3

|
Lasas

= Yes indeed.
= We check whether or not -~ (Vx)(3y)Lxy

(V) (Fy)Lxy \a1 a0, a3
(3)’)L01|1y vay
Lallaz
(3)’)L61|2y vas
La|2a3

|
(3y)Lasy. ..

= What’s going on here?

= [t turns out that there exists a proof of invalidity: the completed
tableau is in fact open.

= Problem: the completed open tableau is infinitely long!

= So we cannot find this proof in a finite number of steps by
sequentially applying rules until we complete the tableau.

= This is also demonstrably true of any other mechanisable
procedure for finding a proof of either validity or invalidity in
pred. logic.

= We say that predicate logic is

= This is not the case for propositional logic, nor is it the case for
the restriction of predicate logic to monadic predicates.

= In both those cases, completed trees are always finite.

= What’s going on here?

= [t turns out that there exists a proof of invalidity: the completed
tableau is in fact open.

= Problem: the completed open tableau is infinitely long!

= So we cannot find this proof in a finite number of steps by
sequentially applying rules until we complete the tableau.

= This is also demonstrably true of any other mechanisable
procedure for finding a proof of either validity or invalidity in
pred. logic.

= We say that predicate logic is

= This is not the case for propositional logic, nor is it the case for
the restriction of predicate logic to monadic predicates.

= In both those cases, completed trees are always finite.

Introduction
Testing for validity: the general case (ctd.)
Examples

An interminable open tableau (!) (ctd.)

= What’s going on here?

= [t turns out that there exists a proof of invalidity: the completed
tableau is in fact open.

J. Chandler ELEMENTS OF DEDUCTIVE LOGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

An interminable open tableau (!) (ctd.)

= What’s going on here?

= [t turns out that there exists a proof of invalidity: the completed
tableau is in fact open.

= Problem: the completed open tableau is infinitely long!

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

An interminable open tableau (!) (ctd.)

What’s going on here?

It turns out that there exists a proof of invalidity: the completed
tableau is in fact open.

Problem: the completed open tableau is infinitely long!

= So we cannot find this proof in a finite number of steps by
sequentially applying rules until we complete the tableau.

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

An interminable open tableau (!) (ctd.)

= What’s going on here?

= [t turns out that there exists a proof of invalidity: the completed
tableau is in fact open.

= Problem: the completed open tableau is infinitely long!

= So we cannot find this proof in a finite number of steps by
sequentially applying rules until we complete the tableau.

= This is also demonstrably true of any other mechanisable
procedure for finding a proof of either validity or invalidity in
pred. logic.

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

An interminable open tableau (!) (ctd.)

= What’s going on here?

= [t turns out that there exists a proof of invalidity: the completed
tableau is in fact open.

= Problem: the completed open tableau is infinitely long!

= So we cannot find this proof in a finite number of steps by
sequentially applying rules until we complete the tableau.

= This is also demonstrably true of any other mechanisable
procedure for finding a proof of either validity or invalidity in
pred. logic.

= We say that predicate logic is

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

An interminable open tableau (!) (ctd.)

= What’s going on here?

= [t turns out that there exists a proof of invalidity: the completed
tableau is in fact open.

= Problem: the completed open tableau is infinitely long!

= So we cannot find this proof in a finite number of steps by
sequentially applying rules until we complete the tableau.

= This is also demonstrably true of any other mechanisable
procedure for finding a proof of either validity or invalidity in
pred. logic.

= We say that predicate logic is

= This is not the case for propositional logic, nor is it the case for
the restriction of predicate logic to monadic predicates.

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

Introduction
Testing for validity: the general case (ctd.)
Examples

An interminable open tableau (!) (ctd.)

= What’s going on here?

= [t turns out that there exists a proof of invalidity: the completed
tableau is in fact open.

= Problem: the completed open tableau is infinitely long!

= So we cannot find this proof in a finite number of steps by
sequentially applying rules until we complete the tableau.

= This is also demonstrably true of any other mechanisable
procedure for finding a proof of either validity or invalidity in
pred. logic.

= We say that predicate logic is

= This is not the case for propositional logic, nor is it the case for
the restriction of predicate logic to monadic predicates.

= In both those cases, completed trees are always finite.

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC

= Tableau exercises: check Toledo.

= Session after that: finishing off tableaux + identity and definite
descriptions.

= Reading: Restall Ch. 11.

	Introduction
	Testing for validity: the general case (ctd.)
	Examples
	Appendix

