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The rules for (3x)A and ~ (Vx)A are known as rules:

They are applied only once to a given formula.
Once used, we put a tick next to the formula alongside the name
introduced: e.g.
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After first use, we put a backslash next to the formula alongside
the relevant name: e.g.
Upon subsequent uses, we simply add the relevant
namese.g.
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= Question:
What happens when all the formulae at the root of the tableau are
of the form ~ (3x)A or (Vx)A and do not contain any names?

= Answer:
= Since every domain has at least one element and every element is
named, we have to have at least one name by default, say ‘a’.
= We then substitute this into all the relevant formulae, using the
relevant rules.



= Question:
What happens when all the formulae at the root of the tableau are
of the form ~ (3x)A or (Vx)A and do not contain any names?

= Answer:
= Since every domain has at least one element and every element is
named, we have to have at least one name by default, say ‘a’.
= We then substitute this into all the relevant formulae, using the
relevant rules.



= Question:
What happens when all the formulae at the root of the tableau are
of the form ~ (3x)A or (Vx)A and do not contain any names?

= Answer:
= Since every domain has at least one element and every element is
named, we have to have at least one name by default, say ‘a’.
= We then substitute this into all the relevant formulae, using the
relevant rules.



= Question:
What happens when all the formulae at the root of the tableau are
of the form ~ (3x)A or (Vx)A and do not contain any names?

= Answer:
= Since every domain has at least one element and every element is
named, we have to have at least one name by default, say ‘a’.
= We then substitute this into all the relevant formulae, using the
relevant rules.



Introduction
Testing for validity: the general case (ctd.)
Examples

Note on general rules

s Question:

What happens when all the formulae at the root of the tableau are
of the form ~ (3x)A or (Vx)A and do not contain any names?

= Answer:

= Since every domain has at least one element and every element is
named, we have to have at least one name by default, say ‘a’.

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC



Introduction
Testing for validity: the general case (ctd.)
Examples

Note on general rules

s Question:
What happens when all the formulae at the root of the tableau are
of the form ~ (3x)A or (Vx)A and do not contain any names?

= Answer:

= Since every domain has at least one element and every element is
named, we have to have at least one name by default, say ‘a’.

= We then substitute this into all the relevant formulae, using the
relevant rules.

J. Chandler ELEMENTS OF DEDUCTIVE LoGIC



= We show that (Vx)Gx + (3x)Gx.



= We show that (Vx)Gx + (3x)Gx.



= We show that (Vx)Gx + (3x)Gx.

(Vx)Gx
~ (3Ix)Gx



= We show that (Vx)Gx + (3x)Gx.

(Vx)Gx \u
~ (3Ix)Gx

|
Ga



= We show that (Vx)Gx + (3x)Gx.

(Vx)Gx \u
~(Ix)Gx \a

|
Ga

|
~Ga

X



= Note: there are no repeatable rules in propositional logic.

= The introduction of these rules makes a difference to the
definition of a tree in pred. logic.
= In prop. logic:
A tree is completed iff, in every open branch b, every formula on
b that could have had a rule applied to it has had a rule applied to
it.
= This is not good enough here: some formulae sometimes need to
have rules applied to them more than once.
= In pred. logic:
A tree is completed iff, in every open branch b, (i) every formula
on b that could have had a rule applied to it has had a rule applied

to it and (ii) every name on b has been substituted into every
formula of the form ~ (3x)A or (Vx)A.
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Apply propositional rules first, starting with non-branching rules.

Then apply instantion rules, starting with particular rules.
These recommendations are defeasible, however: e.g. the
application of a general rule may immediately lead to tableau
closure.

Now for 3 examples: a tableau that closes, an open tableau with
countermodel and a little surprise. ..
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= Qur open branch contains: Fa, Gb, ~ Ga and ~ Fb.

= So we have a domain D of size 2, say D = {d, e}, with I defined
as follows:
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= What’s going on here?

= [t turns out that there exists a proof of invalidity: the completed
tableau is in fact open.

= Problem: the completed open tableau is infinitely long!

= So we cannot find this proof in a finite number of steps by
sequentially applying rules until we complete the tableau.

= This is also demonstrably true of any other mechanisable
procedure for finding a proof of either validity or invalidity in
pred. logic.

= We say that predicate logic is

= This is not the case for propositional logic, nor is it the case for
the restriction of predicate logic to monadic predicates.

= In both those cases, completed trees are always finite.
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= What’s going on here?

= [t turns out that there exists a proof of invalidity: the completed
tableau is in fact open.

= Problem: the completed open tableau is infinitely long!

= So we cannot find this proof in a finite number of steps by
sequentially applying rules until we complete the tableau.

= This is also demonstrably true of any other mechanisable
procedure for finding a proof of either validity or invalidity in
pred. logic.

= We say that predicate logic is

= This is not the case for propositional logic, nor is it the case for
the restriction of predicate logic to monadic predicates.

= In both those cases, completed trees are always finite.
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= Tableau exercises: check Toledo.

= Session after that: finishing off tableaux + identity and definite
descriptions.

= Reading: Restall Ch. 11.
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